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The HK representation of close-packed polytypes is studied as a binary code. It

is shown that the HK code can be seen as operators forming a group. The

neutrality condition is then translated to HK sequences that result in the identity

operator. The symmetry of an HK word can be related to the space-group

symmetry of the corresponding polytype. All HK code types corresponding to

all possible close-packed space groups are reported. From a coding perspective,

equivalent HK codes correspond to bracelet equivalent classes. An efficient

algorithm with execution time constant per generated object is modified to

generate all non-equivalent polytypes of a given length.

1. Introduction

It is known that close-packed crystals can be described by the

local environment of each layer in the stack (Verma &

Krishna, 1966). This description results, for nearest neighbors,

in the so-called HK code, introduced by Jagodzinski (1949),

where a letter h is assigned to each layer having the same type

of layer at each side (e.g. AXA, BXB, CXC), and a letter k is

assigned otherwise. The HK code emphasizes the fact that the

letter assigned to each layer position is irrelevant as long as

consistency is kept, while the first-neighborhood environment

has a real physical meaning. This description has been less

studied than the Hägg coding, which is the basis of the

Zhdanov symbols of polytypes (Zhdanov, 1945); a more recent

and in-depth discussion of Zhdanov symbols can be found in

Iglesias (2006a). Both descriptions, the HK and the Hägg

codings, are bijective between them and with respect to the

single-layer description . . . ABC . . ..
For a given length N, there will be in general 2N different

binary sequences, yet, if these sequences are to represent

close-packed polytypes, then symmetry will significantly

reduce the number of non-equivalent codes (Iglesias, 1981;

McLarnan, 1981; Estevez-Rams, Azanza-Ricardo, Martı́nez

Garcı́a & Aragón-Fernández, 2005). To effectively count the

number �ðNÞ of non-equivalent polytypes of length N, the

naive approach of generating all possible sequences and then

classifying equivalent ones becomes intractable due to its

exponential explosion with N. Smarter counting procedures

that avoid the necessity of generating all the sequences have

been reported (McLarnan, 1981; Iglesias, 1981; Estevez-Rams,

Azanza-Ricardo, Martı́nez Garcı́a & Aragón-Fernández, 2005;

Estevez-Rams, Azanza-Ricardo & Aragon-Fernandez, 2005).

Recently, Iglesias (2006b) obtained closed expressions, much

simpler than previous approaches, that allow the number of

polytypes of a given space group to be counted in an efficient

way.

The problem of generating all non-equivalent polytypes of a

given length shares common problems with the counting

problem. As there are 2N possible sequences, the naive

approach will also explode its execution time per object with

N.

In this paper, the complete symmetry description of the HK

code corresponding to each close-packed polytype space

group is reported. Also, an efficient algorithm for generating

all non-equivalent polytypes of a given length will be

presented. Efficient will mean constant amortized time (CAT),

which is proportional to �ðNÞ, the number of objects gener-

ated. The algorithms are based on a previously reported CAT

algorithm for bracelet generation (Sawada, 2001) modified to

take into account the neutrality of the generated codes. The

paper is organized as follows: we first introduce the HK code

as non-commuting operators forming a group and, from there,

discuss the neutrality condition that any code describing a

valid polytype must obey. The symmetry of the HK codes will

then be studied and its relation to the space group of the

corresponding polytype. The generation problem of non-

equivalent polytypes will be built considering each code as a

bracelet word in coding theory. The algorithm will then be

described and reported.

2. The HK coding and the neutrality condition

The HK code takes symbols from the alphabet � ¼ fh; kg, and

every finite string of concatenated symbols drawn from � will

be called a word.



For a periodic arrangement of periodicity N, the corre-

sponding word of length N will be sufficient to describe the

whole arrangement, for example the periodic stacking

. . . ABCBABjABCBABjABCBABjABCBAB . . ., of period 6,

can be described by the word hkhkhh of the same length. The

first and last symbol in the HK word is a consequence of the

stacking periodicity. The close-packed condition means that

nowhere in the stacking sequence can two equal consecutive

layers (AA, BB or CC) happen, this in turn implies for a

periodic sequence that the repeating unit cannot start and end

with the same letter.

For every polytype of a given length, more than one HK

code or word can be constructed. From the definition above,

and the periodicity of the polytype, it is clear that any cyclic

rotation of the word will represent the same polytype (e.g.

hkhkhh, khkhhh, hkhhhk, khhhkh, hhhkhk, hhkhkh are all

equivalent), the reversion of the word (hkhkhh and hhkhkh)

will also represent the same the polytype, as the reversed word

translates into observing the same stacking arrangement from

the other ‘end’. Therefore, all words that can be brought to

coincidence by a cyclic shift, a reversion or a combination of

both operations will represent the same polytype: they belong

to the same equivalence class or orbit. Any member of the

equivalence class will be equally good for representing the

whole orbit.

A further consideration is important: periodicity implies

that the repeating unit must start with the same layer and

therefore any valid word must comply with this restriction. For

example, the code hkkh will describe a sequence of the type

. . . AjBACBjC . . ., where the supposed periodic unit is

between the vertical bars. It is clear that it is not periodic and

furthermore BACB, taken as a periodic unit, violates the

close-packed condition where two consecutive layers of the

same type are forbidden; words that lead to this type of

inconsistency are called non-neutral codes, we will also

introduce them as charged codes. On the contrary, the word

hkhk represents the sequence . . . AjBACAjB . . ., which is

clearly periodic and does not violate the close-packed

restriction. The HK codes that result in a valid polytype

sequence will be called neutral. A similar concept has been

discussed for the Hägg code (Estevez-Rams, Azanza-Ricardo

& Aragon-Fernandez, 2005; Estevez-Rams, Azanza-Ricardo,

Martı́nez Garcı́a & Aragón-Fernández, 2005). When a code is

not neutral, repeating the code a number of times will even-

tually result in a neutral code (more on this below), thus, a

non-neutral code represents the repeating unit of the

complete valid HK code representing a polytype. This fact was

used in the original Jagodzinski notation to further shorten

the notation. For example, a valid neutral code like

hhhkhkk hhhkhkk hhhkhkk was shortened to ½hhhkhkk�3,

indicating that the non-neutral code hhhkhkk has to be

expanded three times to get a valid non-neutral code repre-

senting a polytype. In what follows, we will use the full code

for representing the polytypes. This makes it easier to

understand some discussions; the notation is clear enough to

go from the original Jagodzinski notation to the expanded one

and so the original code will be used when no confusion arises.

In order to derive an expression for neutrality that allows

one to discriminate valid from invalid words, each symbol in

the HK code can be viewed as an operator acting on a pair of

ABC symbols and giving as output again a pair of ABC

symbols, where the last symbol is the next symbol to the input

sequence. Let us take an XY pair, where X and Y stand for A,

B or C, the h operator will then be defined by the following

relation:

hðXYÞ ¼ YX; ð1Þ

for example, hðABÞ ¼ BA. The k operator will be defined by

the relation

kðXYÞ ¼ YZ; ð2Þ

for example, kðABÞ ¼ BC. The multiplication of the defined

operators will result in the following four new operators:

k2
ðXYÞ ¼ kðkðXYÞÞ ¼ kðYZÞ ¼ ZX

hkðXYÞ ¼ hðkðXYÞÞ ¼ hðYZÞ ¼ ZY

khðXYÞ ¼ kðhðXYÞÞ ¼ kðYXÞ ¼ XZ

ð3Þ

and the identity

eðXYÞ ¼ XY: ð4Þ

The reader can verify the following multiplication table

It follows that fh; kg are the generators of a group with

members fh; k; k2; hk; kh ¼ hk2; eg isomorphic with the S3

permutation group and the 3m point group. From these

isomorphisms, the sets fk; k2g and fh; hk; khg each form

conjugate classes. In the first conjugate class, the operators are

of order 3, while in the latter, they are of order 2. The alter-

nating cyclic permutation subgroup fe; k; k2g is invariant.

From the isomorphism, the following matrix representation

can be ascribed to each operator:

h ¼
0 1

1 0

� �
; k ¼

0 �1

1 �1

� �
; k2 ¼

�1 1

�1 0

� �
;

kh ¼
�1 0

�1 1

� �
; hk ¼

1 �1

0 �1

� �
; e ¼

1 0

0 1

� �
: ð5Þ

The neutrality constraint for a given HK code is now reduced

to the condition that the multiplication of the operators in the

code must result in the identity operator. For example,

hkkhhhkhhk ¼ hkkhðhhÞkhhk ¼ hkðkhkhÞhk ¼ ðhkhkÞ ¼ e:

If a code does not result in the identity operator, the code is

not neutral. The charge of a code will be labeled by the

resulting operator [e.g. the code khkkhhkh will have charge k

resulting from khkkðhhÞkh = khðkkkÞh = kðhhÞ = k, that is,

deleting any subword which fulfils the neutrality will not
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h k k2 kh hk e

h e hk kh k2 k h
k2 hk e k h kh k2

k kh k2 e hk h k
kh k h hk e k2 kh
hk k2 kh h k e hk
e h k k2 kh hk e



change the charge of the word]. From the ongoing discussion,

three times a code of charge k or k2 will result in a neutral

code, while the same will happen for two times a code of

charge h, kh or hk. (As kindly pointed out by one of the

referees, this last rules allows us to recover the original

Jagodzinski notation and non-neutral codes can be considered

valid with periodicity given by the order of the charge, see

Table 1.) Reversion of the code will keep the charge constant

for k, k2 and h while, for the charges hk and kh, a transposition

of the two charges will occur.

3. Relation between the symmetry of the polytype and
the symmetry of the HK coding

The discussion in what follows will be building on the

description of symmetry in Hägg codes described by Estevez-

Rams, Azanza-Ricardo, Martı́nez Garcı́a & Aragón-

Fernández (2005) and specially on the thorough discussion of

Zhdanov symbols and cyclotomic sets by Iglesias (2006a). The

reader is referred to these two articles for a discussion of the

symmetry of the stacking sequence, keeping in mind that the

relationship between Hägg codes and HK codes follow two

rules:

(i) every time a þ� or a �þ sequence appears in a Hägg

code, the corresponding HK word will have a letter h in the

last position;

(ii) every time two equal consecutive symbols þþ or ��

appear in a Hägg code, the corresponding HK word will have a

letter k in the last position.

According to the above rules, the following Hägg and HK

codes of a periodic sequence are equivalent:

þ � þ þ þ � þ þ �

h h h k k h h k h:

Five symmetry operations (Patterson & Kasper, 1959; Iglesias,

2006a), which are relevant for the stacking arrangement, can

act over the close-packed layers: the 31 and the 63 screw axes

perpendicular to the layer plane; the mirror plane m parallel

to the layer plane; the inversion center which can be located in

two different sites, over the spheres of a close-packed layer or

in the octahedral sites between two close-packed layers; and,

finally, the identity or a 3 axis perpendicular to the layers.

3.1. Polytypes with only one symmetry operator acting over
the stacking arrangement

3.1.1. The 3 axis (P3m1). The 3 axis over a sphere position

is equivalent to the identity operation, therefore there is no

restriction to the HK code, and the only condition that it has to

comply with is neutrality (Fig. 1a). The first code belonging to

this symmetry is ½h4kh2k2� ¼ jhhhhkhhkkj.

3.1.2. The 63 axis (P63mc). The 63 screw axis passing

through the sphere of a close-packed layer will result in a layer

of the same type displaced by one half of the stacking

periodicity, while layers in the two other alternative sites will

result in transposed layers with the same displacement.

Consider for example the 63 axis passing through the A sites of

a layer, then this will result in an A layer displaced by one half

from the first A-layer position, the B (C) layers will result in C

(B) layers also displaced by one half. Therefore, the 63 axis

divides the stacking sequence into two blocks displaced by one

half of the stacking period from each other. According to this

rule, as one symbol is kept and the two others are transposed,

the nearest neighbor of each layer in the first block is kept in

the displaced one. For example, if the first block has the

sequence ABCB, the second block will be ACBC and finally

the whole periodic sequence will be ABCBjACBC, which

corresponds to the HK code kkhkjkkhk. The HK code

corresponding to this sequence will then consist of two iden-

tical blocks (Fig. 1b). The HK code will have a periodicity of

one half of the periodicity of the stacking sequence. The

periodicity of the stacking sequence will therefore be a even

number. As the whole code must be neutral, each half must

have a charge of order two which corresponds to h, kh or hk.
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Table 1
The equivalence between the expanded code and the original HK
notation of Jagodzinski (1949).

An HK word w with the given charge results in an expanded and short valid
code as given by the table.

Charge Expanded code Short code

e w w
h ww ½w�2
k www ½w�3
k2 www ½w�3
hk ww ½w�2
kh ww ½w�2

Figure 1
HK-code symmetry for a stacking arrangement with only one symmetry
operation: (a) the identity (3), (b) a sixfold screw axis (63), (c) a mirror
(m) and (d) a threefold screw axis (31). The X block is represented by a
left hand and the reverse code ~XX by a right hand, the charge of the block
is indicated by a number defined in the panel on the left.



The first code belonging to this symmetry is

½h2khk2�2 ¼ jhhkhkkjhhkhkkj.

3.1.3. The m mirror plane (P�66�66m2). The close-packed

restriction forces any m symmetry parallel to the layers to be

contained within a close-packed layer; from this, the period-

icity of the stacking sequence must be an even number. The

symmetry will result in the same type of layer above and below

the mirror plane, again the sequence will consist of two

blocks divided by the mirror-plane layer, for example,

CABCBABCBAjC, where mirror planes are indicated by the

underlined letters and the HK word is left of the vertical bar.

From the symmetry rule, it is clear that the environment of the

mirror plane can only be h and the blocks at each side of the

mirror plane are reversed with respect to each other. The

symmetry of the HK code is graphically shown in Fig. 1(c). As

the whole code must be neutral, from the same Fig. 1(c), the

following equation results:

Xh ~XXh ¼ e; ð6Þ

where X is the charge of one block and ~XX is the charge of the

reversed block. The equation is satisfied for all possible X

charges.

The first code belonging to this symmetry is ½ðhkÞ2h2�

¼ jhk h kh hj.

3.1.4. The 31 axis (R3m). The 3 axis over a sphere position is

equivalent to the identity operation, therefore the 31 operator

results in a block repeated three times (Fig. 1d). The period-

icity of the HK word is one third of the periodicity of the

stacking sequence. The periodicity of the stacking sequence

must be an integer multiple of three. The neutrality condition

in this case leads to a charge of the repeating block equal to k

or k2.

The first code belonging to this symmetry is

½h3khk2�3 ¼ jhhhkhkk hhhkhkk hhhkhkkj.

3.1.5. The �11�11 inversion center (P�33�33m1). Three possibilities

now arise: the inversion center is at the spheres in a layer, this

position is denoted by the letter S; the inversion center is at

the octahedral site between two layers, this position is denoted

by the letter O; and finally, inversion centers are at both sites

already described, this position is denoted by SO.
�11ðSÞ. Consider that the inversion center is at the sphere

center in an A layer. Then, a layer B (C) on one side of the

inversion layer will result in a C (B) layer at the same distance

from the inversion center on the other side of the inversion

layer. A layers on one side will still be A layers on the other

side. The resulting stacking sequence will be made up of two

blocks separated by a k corresponding to the environment of

the inversion layer, the blocks will be a reverse pair (Fig. 2a).

If the only inversion point is at the sphere center in a layer, the

periodicity will be an even number (McLarnan, 1981).

The neutrality condition will be given by the equation

Xk ~XXk ¼ e: ð7Þ

This equation is satisfied by a block X of charge h and k2.

The first code belonging to this symmetry is ½h2k5h2k�

¼ jhhkk k kkhh kj.

�11ðOÞ. Consider that the inversion center is at the octahedral

sites between two layers A and B. Then the inversion center

will be over the C sites. The layer transformation rules will be

A$ B, C$ C. The HK code will be formed by a pair of

reversed related blocks (Fig. 2b). The neutrality condition will

result in both blocks having charge h. Again, if the only

inversion point is at the octahedral site in a layer, the

periodicity will be an even number (McLarnan, 1981).

The first code belonging to this symmetry is

½ðhkÞ2ðkhÞ2� ¼ jhkhk khkhj.
�11ðSOÞ. This case is the combination of the two previous

cases but the number of layers in the periodic unit will be an

odd number. It should be noticed that the �11ðSÞ centers are in

one layer and the �11ðOÞ centers are in the octahedral site of any

pair of layers not including the layer with the inversion centers

(an exception to this is the kkk code belonging to Fm�33m). The

resulting HK code is made by a k symbol at one side separ-

ating a pair of reversion-related blocks (Fig. 2c).

The neutrality condition will be given by the equation

Xk ~XX ¼ e: ð8Þ

This equation is satisfied by a block X of charge k and hk.

The first code belonging to this symmetry is ½h2k3�

¼ jhk k khj.
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Figure 2
HK-code symmetry for a stacking arrangement with inversion center at
(a) the sphere (s), (b) octahedral sites (o) and (c) both (so). The numbers
representing the charge of the X blocks follow the same convention as in
Fig. 1.

Figure 3
HK-code symmetry for a stacking arrangement with the combination of a
31 screw axis and an inversion center at (a) the sphere (s), (b) octahedral
sites (o) and (c) both (so). The numbers representing the charge of the X
blocks follow the same convention as in Fig. 1.



3.2. Combination of symmetry operations

3.2.1. The 31 and �11�11 operations (R�33�33m). The three possibi-

lities for the inversion center position are consistent with the

31 operation resulting in three configurations.
�11ðSÞ. This case will be a combination of the diagrams in Figs.

1(d) and 2(a), the resulting diagram is shown in Fig. 3(a). The

periodicity will be a multiple of 6. The neutrality equation will

be

ðkXk ~XXÞ3 ¼ e ð9Þ

but one sequence kXk ~XX must be non-neutral, otherwise it will

be the smallest periodic unit. So the following constraint must

be added:

kXk ~XX 6¼ e: ð10Þ

These equations are satisfied by a block X of charge e, k, kh

and hk. The first code belonging to this symmetry is

½hk3hk�3 ¼ jhk k kh kjhk k kh kjhk k kh kj.
�11ðOÞ. This case will be a combination of the diagrams in

Figs. 1(d) and 2(b), the resulting diagram is shown in Fig. 3(b).

The periodicity will be a multiple of 6. The neutrality equation

will be

ðX ~XXÞ3 ¼ e ð11Þ

and

X ~XX 6¼ e: ð12Þ

These equations are satisfied by a block X of charge k, k2, kh

and hk.

The first code belonging to this symmetry is ½h2k2�3
¼ jhk khjhk khjhk khj.

�11ðSOÞ. This case will be a combination of the diagrams in

Figs. 1(d) and 2(c), the resulting diagram is shown in Fig. 3(c).

The periodicity will be a multiple of 3 but of the type

3ð2N þ 1Þ where N is an integer number.

The neutrality equation will be

ðXk ~XXÞ3 ¼ e ð13Þ

and

Xk ~XX 6¼ e: ð14Þ

These equations are satisfied by a block X of charge e, h, k2.

The first code belonging to this symmetry is ½k�3 ¼ jkjkjkj,

which actually belongs to the special case of cubic symmetry

Fm�33m due to the ideal metric of the close-packed arrange-

ment (R�33m is a subgroup of Fm�33m).

3.2.2. The 63 and �11�11 operations (P63/mmc). Two possibilities

arise, inversion center only at the center of spheres or only at

the octahedral sites, �11ðSOÞ is excluded (Iglesias, 2006a):
�11ðSÞ. This case will be a combination of Figs. 1(b) and 2(a),

the resulting diagram is shown in Fig. 4(a). The periodicity will

be a multiple of 4. In this case, the neutrality equation will be

ðhXk ~XXÞ2 ¼ e ð15Þ

and

hXk ~XX 6¼ e; ð16Þ

which allows all charges for the X blocks. The first code

belonging to this symmetry is ½hk�2 ¼ jhk hkj.
�11ðOÞ. This case will be a combination of the diagrams in

Figs. 1(b) and 2(b), the resulting diagram is shown in Fig. 4(b).

The periodicity will be a even number of the type 2ð2N þ 1Þ,

where N is an integer. The neutrality equation will be

ðXh ~XXÞ2 ¼ e ð17Þ

and

Xh ~XX 6¼ e; ð18Þ

which allows all charges for the X blocks. The first code

belonging to this symmetry is ½h�2 ¼ jhjhj.

4. Efficient generation of polytypes

A bijection between the set of HK binary codes and the non-

negative integer numbers can be made, and it is useful to

define a lexicographic order over all possible HK words:

0! (empty code)

1! h

2! k

3! hh

4! hk

5! kh

6! kk

7! hhh

8! hhk

9! hkh

10! hkk

11! khh

12! khk

13! kkh

14! kkk:
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Figure 4
HK-code symmetry for a stacking arrangement with the combination of a
63 screw axis and an inversion center at (a) the sphere (s), (b) octahedral
sites (o).



In coding theory, the quasilexicographically smallest word

among all the rotationally equivalent words (that is under all

cyclic shifts of the word) is called a necklace (Lothaire, 1983).

For example, from the equivalence class under rotation

formed by the words

S1 ¼ fhkhkhh; hhkhkh; hhhkhk; khhhkh; hkhhhk; khkhhhg;

hhhkhk will be a necklace. If the necklace itself is not periodic,

then it is called a Lyndon word. The set of all necklaces of

length N will be denoted by NcðNÞ. If we add to our equiva-

lence operations the reversion, then the lexicographically

smallest word among all rotationally and reverse equivalent

words is called a bracelet (Lothaire, 1983). For example, to the

set analyzed above, the following reverse set must be added,

S2 ¼ fhhkhkh; hkhkhh; khkhhh; hkhhhk; khhhkh; hhhkhkg;

to form the equivalence class under rotations and reversion,

and the unique bracelet will still be given by the word hhhkhk.

The set of all bracelets of length N is denoted by BrðNÞ. Owing

to the symmetry of the HK code, the set PltðNÞ of all non-

equivalent polytypes of length N, described in the HK coding,

will be the subset of BrðNÞ for which the neutrality condition

holds. Formally,
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Table 2
The non-equivalent close-packing polytypes up to a length of 12 in binary notation.

0 corresponds to h and 1 to k. Lexicographic order (LO) and space group (SG) are also given.

LO SG Sequence LO SG Sequence

3 P63=mmcðoÞ 0 0 14 Fm�33mðsoÞ 1 1 1
20 P63=mmcðsÞ 0 1 0 1 38 P�33m1ðsoÞ 0 0 1 1 1
68 P�66m2, 0 0 0 1 0 1 90 P63=mmcðoÞ 0 1 1 0 1 1

134 P�33m1ðsoÞ 0 0 0 0 1 1 1 146 P�33m1ðsoÞ 0 0 1 0 0 1 1
174 P�33m1ðsoÞ 0 1 0 1 1 1 1 260 P�66m2 0 0 0 0 0 1 0 1
272 P63=mmcðsÞ 0 0 0 1 0 0 0 1 282 P�66m2 0 0 0 1 1 0 1 1
300 P�33m1ðoÞ 0 0 1 0 1 1 0 1 318 P�33m1ðoÞ 0 0 1 1 1 1 1 1
374 P63=mmcðsÞ 0 1 1 1 0 1 1 1 518 P�33m1ðsoÞ 0 0 0 0 0 0 c 1 1
530 P3m1 0 0 0 0 1 0 0 1 1 558 P3m1 0 0 0 1 0 1 1 1 1
584 R�33mðsoÞ 0 0 1 0 0 1 0 0 1 598 P3m1 0 0 1 0 1 0 1 1 1
618 P�33m1ðsoÞ 0 0 1 1 0 1 0 1 1 734 P�33m1ðsoÞ 0 1 1 0 1 1 1 1 1

1028 P�66m2 0 0 0 0 0 0 0 1 0 1 1040 P�66m2 0 0 0 0 0 1 0 0 0 1
1050 P�66m2 0 0 0 0 0 1 1 0 1 1 1068 P�33m1ðoÞ 0 0 0 0 1 0 1 1 0 1
1086 P�33m1ðoÞ 0 0 0 0 1 1 1 1 1 1 1098 P3m1 0 0 0 1 0 0 1 0 1 1
1108 P�66m2 0 0 0 1 0 1 0 1 0 1 1122 P63=mmcðoÞ 0 0 0 1 1 0 0 0 1 1
1142 P�66m2 0 0 0 1 1 1 0 1 1 1 1182 P�33m1ðsÞ 0 0 1 0 0 1 1 1 1 1
1188 P63=mmcðoÞ 0 0 1 0 1 0 0 1 0 1 1210 P3m1 0 0 1 0 1 1 1 0 1 1
1230 P�33m1ðoÞ 0 0 1 1 0 0 1 1 1 1 1370 P�66m2 0 1 0 1 0 1 1 0 1 1
1406 P�33m1ðsÞ 0 1 0 1 1 1 1 1 1 1 1518 P63=mmcðoÞ 0 1 1 1 1 0 1 1 1 1
2054 P�33m1ðsoÞ 0 0 0 0 0 0 0 0 1 1 1 2066 P3m1 0 0 0 0 0 0 1 0 0 1 1
2094 P3m1 0 0 0 0 0 1 0 1 1 1 1 2114 P�33m1ðsoÞ 0 0 0 0 1 0 0 0 0 1 1
2120 P�33m1ðsoÞ 0 0 0 0 1 0 0 1 0 0 1 2134 P3m1 0 0 0 0 1 0 1 0 1 1 1
2154 P�33m1ðsoÞ 0 0 0 0 1 1 0 1 0 1 1 2190 P�33m1ðsoÞ 0 0 0 1 0 0 0 1 1 1 1
2204 P3m1 0 0 0 1 0 0 1 1 1 0 1 2214 P3m1 0 0 0 1 0 1 0 0 1 1 1
2226 P3m1 0 0 0 1 0 1 1 0 0 1 1 2270 P3m1 0 0 0 1 1 0 1 1 1 1 1
2346 P3m1 0 0 1 0 0 1 0 1 0 1 1 2386 P�33m1ðsoÞ 0 0 1 0 1 0 1 0 0 1 1
2414 P3m1 0 0 1 0 1 1 0 1 1 1 1 2428 P�33m1ðsoÞ 0 0 1 0 1 1 1 1 1 0 1
2486 P3m1 0 0 1 1 0 1 1 0 1 1 1 2558 P�33m1ðsoÞ 0 0 1 1 1 1 1 1 1 1 1
2734 P�33m1ðsoÞ 0 1 0 1 0 1 0 1 1 1 1 2774 P�33m1ðsoÞ 0 1 0 1 1 0 1 0 1 1 1
3006 P�33m1ðsoÞ 0 1 1 1 0 1 1 1 1 1 1 4100 P�66m2 0 0 0 0 0 0 0 0 0 1 0 1
4112 P�66m2 0 0 0 0 0 0 0 1 0 0 0 1 4122 P�66m2 0 0 0 0 0 0 0 1 1 0 1 1
4140 P�33m1ðoÞ 0 0 0 0 0 0 1 0 1 1 0 1 4158 P�33m1ðoÞ 0 0 0 0 0 0 1 1 1 1 1 1
4160 P63=mmcðsÞ 0 0 0 0 0 1 0 0 0 0 0 1 4170 P3m1 0 0 0 0 0 1 0 0 1 0 1 1
4180 P�66m2 0 0 0 0 0 1 0 1 0 1 0 1 4194 P�66m2 0 0 0 0 0 1 1 0 0 0 1 1
4214 P�66m2 0 0 0 0 0 1 1 1 0 1 1 1 4236 P3m1 0 0 0 0 1 0 0 0 1 1 0 1
4254 P3m1 0 0 0 0 1 0 0 1 1 1 1 1 4260 P�33m1ðoÞ 0 0 0 0 1 0 1 0 0 1 0 1
4282 P3m1 0 0 0 0 1 0 1 1 1 0 1 1 4302 P3m1 0 0 0 0 1 1 0 0 1 1 1 1
4326 P�33m1ðoÞ 0 0 0 0 1 1 1 0 0 1 1 1 4372 P�33m1ðsÞ 0 0 0 1 0 0 0 1 0 1 0 1
4386 P�33m1ðoÞ 0 0 0 1 0 0 1 0 0 0 1 1 4392 P�66m2 0 0 0 1 0 0 1 0 1 0 0 1
4406 P3m1 0 0 0 1 0 0 1 1 0 1 1 1 4442 P3m1 0 0 0 1 0 1 0 1 1 0 1 1
4460 P�66m2 0 0 0 1 0 1 1 0 1 1 0 1 4478 P3m1 0 0 0 1 0 1 1 1 1 1 1 1
4502 P3m1 0 0 0 1 1 0 0 1 0 1 1 1 4522 P�66m2 0 0 0 1 1 0 1 0 1 0 1 1
4550 P63=mmcðsÞ 0 0 0 1 1 1 0 0 0 1 1 1 4590 P�66m2 0 0 0 1 1 1 1 0 1 1 1 1
4686 P�33m1ðoÞ 0 0 1 0 0 1 0 0 1 1 1 1 4700 P�33m1ðsÞ 0 0 1 0 0 1 0 1 1 1 0 1
4710 P3m1 0 0 1 0 0 1 1 0 0 1 1 1 4762 P�66m2 0 0 1 0 1 0 0 1 1 0 1 1
4780 P3m1 0 0 1 0 1 0 1 0 1 1 0 1 4798 P3m1 0 0 1 0 1 0 1 1 1 1 1 1
4810 P63mc 0 0 1 0 1 1 0 0 1 0 1 1 4854 P3m1 0 0 1 0 1 1 1 1 0 1 1 1
4914 R�33mðoÞ 0 0 1 1 0 0 1 1 0 0 1 1 4958 P3m1 0 0 1 1 0 1 0 1 1 1 1 1
4986 P�33m1ðoÞ 0 0 1 1 0 1 1 1 1 0 1 1 5038 P3m1 0 0 1 1 1 0 1 0 1 1 1 1
5494 P�66m2 0 1 0 1 0 1 1 1 0 1 1 1 5562 P�33m1ðsÞ 0 1 0 1 1 0 1 1 1 0 1 1
5886 P�33m1ðoÞ 0 1 1 0 1 1 1 1 1 1 1 1 6110 P63=mmcðsÞ 0 1 1 1 1 1 0 1 1 1 1 1



PltðNÞ ¼ f� 2 BrðNÞ j � is neutralg: ð19Þ

An algorithm to exhaustively generate bracelets has been

reported by Sawada (2001). The algorithm builds necklaces

with an additional checking to discard those which will not

result in bracelets. The algorithm runs in constant amortized

time (CAT). An algorithm is said to be CAT if the computa-

tion is proportional to the number of objects generated. A

brief description of the main logic behind this algorithm will

be presented.

Given a code � formed by two words u and v by concat-

enation, � ¼ uv, u will be called a prefix of �. If � happens to

be a necklace then u is called a prenecklace. The set of all

binary prenecklaces of length P will be denoted by PNcðPÞ:

PNcðPÞ ¼ fu j uv 2 NcðPþMÞ;M � 0; u; v are wordsg:

ð20Þ

The algorithm for generating necklaces is due to Cattel et al.

(2000) and recursively adds a new symbol x to a prenecklace �
of length P, such that �x is still a prenecklace. If l ¼ lynð�Þ is

the length of the longest Lyndon word prefix of �, then x ¼ k if

�P�l ¼ k and l is unchanged, otherwise x can take any value h

or k and l ¼ Pþ 1. If Pþ 1 is divisible by l, then the generated

word �x is a necklace, if N þ 1 ¼ l, then the necklace will be a

Lyndon word. The algorithm starts with the simple word � ¼ h

and generates necklaces in lexicographic order.

Sawada (2001) modified the above algorithm to spot, as

soon as it was generated, if a prenecklace could not give rise to

a bracelet. The idea is to avoid comparison of the generated

prenecklace with all rotations of the reverse code which will

add a heavy toll of OðP2NcðpÞÞ running time to the necklace

CAT algorithm. In order to avoid this naive approach, some

heuristic code was added to the necklace algorithm that

checks if the prenecklace is valid as a prebracelet. The total

time for this checking is proportional to the number of objects

generated. The resulting algorithm is still CAT. To this code

we now add an additional predicate to check if the resulting

necklace is neutral. In order to do so, a parameter is added to

the bracelet algorithm that keeps track of the charge of the

generated word, in this way no additional complexity is added

to the execution time of the algorithm. When the algorithm

reaches the required length, if it is a neutral Lyndon word, the

code is a valid HK code; if it is not aperiodic and the obtained

code is formed by two identical blocks, then each block must

be non-neutral, that is with charge h, hk or kh, and the whole

code will be neutral and a valid HK code; finally, if the bracelet

is neutral and formed by three identical blocks, then each

block must be non-neutral, that is with charge belonging to the

conjugate class fk; k2g.

In Fig. 5, the plot of the execution time (in arbitrary units)

per generated object against the polytype length is shown

where, for sufficiently large word length L, the CAT behavior

can be recognized. Table 2 shows the first polytypes up to

length 12; the space group was identified using the results

obtained for each symmetry as discussed above.

5. Conclusions

The HK coding of close-packed polytypes has been discussed.

The symmetry of the HK code has been related to the

symmetry of the polytype. The whole chart of HK code

symmetries has been presented. An efficient algorithm with

CAT execution time has been described. The algorithm allows

all valid HK codes of a given length to be generated.1

Further research on a CAT algorithm to generate polytypes

by space group is under way and will be reported elsewhere.
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